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ABSTRACT

In this paper we study the monotonicity and convexity properties in quasi-

Banach lattices. We establish relationship between uniform monotonicity,

uniform C-convexity, H- and PL-convexity. We show that if the quasi-

Banach lattice E has α-convexity constant one for some 0 < α < ∞,

then the following are equivalent: (i) E is uniformly PL-convex; (ii) E

is uniformly monotone; and (iii) E is uniformly C-convex. In particular,

it is shown that if E has α-convexity constant one for some 0 < α < ∞

and if E is uniformly C-convex of power type then it is uniformly H-

convex of power type. The relations between concavity, convexity and

monotonicity are also shown so that the Maurey–Pisier type theorem in

a quasi-Banach lattice is proved.

Finally we study the lifting property of uniform PL-convexity: if E is

a quasi-Köthe function space with α-convexity constant one and X is a

continuously quasi-normed space, then it is shown that the quasi-normed

Köthe-Bochner function space E(X) is uniformly PL-convex if and only

if both E and X are uniformly PL-convex.
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1. Introduction and Preliminaries

The notion of uniform monotonicity of lattices was first studied by Birkhoff

in [3] and its characterization and relations with uniform convexity in Banach

function spaces have been further studied in several papers (cf. [13, 14, 15, 16]).

The strict C-convexity of complex Banach space was introduced by Thorp

and Whitely in [31] by the corresponding property characterizing the strong

maximum modulus theorem for the Banach space-valued analytic functions.

For the basic properties and characterizations of C-convexity in certain Banach

spaces, see [4, 5, 18, 19, 20].

The uniform version of complex convexity (it is called uniformly C-convex)

was studied by Globevnik in [12], and there it was shown that L1-space is

uniformly C-convex, which shows that complex convexity is quite different from

the real convexity. For the characterizations of uniform C-convexity in various

function spaces, consult [4, 5].

The moduli of complex convexity of complex quasi-Banach spaces and no-

tion of uniform PL-convexity were introduced by Davis, Garling and Tomczak-

Jagermann in [7]. In the same paper, it was shown that Lp(X) (0 < p < ∞)

is uniformly PL-convex if the continuously quasi-normed space X is uniformly

PL-convex. It was shown by Dilworth in [10] that a complex Banach space

X is uniformly PL-convex if and only if it is uniformly C-convex. Notice that

this equivalence does not hold in certain quasi-Banach lattices. In fact uniform

C-convexity does not imply uniform PL-convexity [24, 28].

Another notion of complex convexity (it is called uniform H-convexity) was

introduced by Xu in [32]. He showed in [34] that a complex quasi-Banach lattice

is uniformly PL-convexifiable if and only it is uniformly H-convexifiable.

Recently, it has been shown by Hudzik and Narloch [17] that a Köthe function

space is uniformly monotone if and only if it is uniformly C-convex. This result

was extended to the case of complex Banach lattices by the author in [23]. In the

same paper, the lifting properties of uniform C-convexity was also investigated.

It was proved that a Köthe function space E is uniformly C-convex and a Banach

space X is uniformly C-convex if and only if the Köthe-Bochner function space

E(X) is uniformly C-convex. For the lifting property of complex geometric

properties to Lebesgue–Bochner spaces Lp(X) (0 < p < ∞), we refer to [7, 11].

In this paper, we shall study the properties of moduli of uniform monotonic-

ity of complex quasi-Banach lattices and their relations with various complex

convexities. First we introduce some notation and terminology.

Let F be a (real or complex) scalar filed. Recall that a quasi-norm on a
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vector space X over F is a real non-negative function ‖ · ‖ on X satisfying

(1) ‖αx‖ = |α| · ‖x‖ for all scalars α ∈ F and all x in X ;

(2) there exists K > 0 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all x and y in

X ; and

(3) ‖x‖ = 0 if and only if x = 0.

The smallest K for which (2) holds is called the quasi-norm constant of

(X, ‖ · ‖). The complete quasi-normed space X is called quasi-Banach space.

X is said to be α-normable, where 0 < α ≤ 1, if for some constant B we have

(1.1) ‖x1 + · · · + xn‖ ≤ B(‖x1‖α + · · · + ‖xn‖α)1/α,

for any x1, . . . , xn in X . If inequality (1.1) holds for B = 1, the quasi-norm ‖ · ‖
is called an α-norm.

In a real vector lattice E, we use the standard notation: let A be a subset of

E and let x, y be two elements in E,

(1) x ∨ y := sup{x, y},
∨

x∈A x := supA, if supA exists in E;

(2) |x| := x ∨ (−x);

(3) x+ := x ∨ 0, x− := (−x) ∨ 0;

(4) x ∧ y := inf{x, y} and
∧

x∈A x := inf A, if inf A exists in E.

Now let (E, ‖ · ‖) be a quasi-Banach lattice, that is, E is a real vector lattice

with a complete quasi-norm ‖ · ‖ satisfying the monotonicity condition: for x, y

in E

|x| ≤ |y| implies ‖x‖ ≤ ‖y‖.

The Aoki–Rolewicz theorem (see [1, 30]) asserts that a quasi-Banach space

X with quasi-norm constant K is α-normable with B = 4 in inequality (1.1),

where α is defined by the equation (2K)α = 2. We can then have an equivalent

quasi-norm

|||x||| = inf

{( n
∑

i=1

‖xi‖α

)1/α

: x = x1 + · · · + xn

}

.

Thus (E, ||| · |||) is an α-norm. In the case of quasi-Banach lattice E, we can

obtain the lattice renorming ||| · ||| defined as

|||x||| = inf

{( n
∑

i=1

‖xi‖α

)1/α

: |x| = x1 + · · · + xn, x1 ≥ 0, . . . , xn ≥ 0

}

,

and so that (E, ||| · |||) is an α-norm.
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We confine ourselves to continuously quasi-normed spaces (X, ‖ ·‖), that

is, the quasi-norm ‖ · ‖ is uniformly continuous on the bounded subsets of X .

Notice that every quasi-Banach space with an α-norm is a continuously quasi-

normed space.

Let 0 < p < ∞. A quasi-Banach lattice E is said to be p-convex (resp.

p-concave) if there exists a constant C > 0 such that for every finite sequence

x1, . . . , xn in E we have

∥

∥

∥

∥

( n
∑

j=1

|xj |p
)1/p∥

∥

∥

∥

≤ C

( n
∑

j=1

‖xj‖p

)1/p

(

resp.

∥

∥

∥

∥

( n
∑

j=1

|xj |p
)1/p∥

∥

∥

∥

≥ C−1

( n
∑

j=1

‖xj‖p

)1/p)

.

Recall that the Krivine functional calculus, allows us to define the element

(
∑

n |xn|p)1/p in E analogously, as for Banach lattices (see [6, 26, 21]). The

smallest constant C is called the p-convexity (resp. p-concavity) constant of E

and is denoted by M (p)(E) (resp. M(p)(E)). For 0 < p ≤ 1, it is easy to check

that the lattice p-convexity implies p-normability and that E is a continuously

quasi-normed space if M (p)(E) = 1.

Notice that if E is a p-convex (resp. q-concave) quasi-Banach lattice then

there is lattice renorming (E, ||| · |||) of which the p-convexity (resp. q-concavity)

constant is equal to one: for each x ∈ E, define the quasi-norm

|||x||| = inf

{( n
∑

j=1

‖xj‖p

)1/p

: |x| =

( n
∑

j=1

|xj |p
)1/p

, x1, . . . , xn ∈ E

}

(

resp. |||x||| = sup

{( n
∑

j=1

‖xj‖p

)1/p

: |x| =

( n
∑

j=1

|xj |p
)1/p

, x1, . . . , xn ∈ E

})

.

Now we denote by E(p) the p-convexification of a quasi-Banach lattice E

(cf. [6, 26]). In the case of function spaces, E(p) can be defined by

E(p) = {x : |x|p ∈ E},

with the quasi-norm

‖x‖
E

(p) = ‖|x|p‖1/p
E .

If E is α-convex and q-concave, then E(p) is αp-convex and qp-concave with

M (αp)(E(p)) = M (α)(E)1/p and M(qp)(E
(p)) = M(q)(E)1/p. If E is α-convex

with M (α)(E) = 1, then E(1/α) is 1-convex and M (1)(E(1/α)) = 1, so it is a

Banach lattice.



Vol. 159, 2007 COMPLEX CONVEXITY AND MONOTONICITY 61

The complexification EC of a real quasi-Banach lattice, E, consists of all

elements x + iy for x, y ∈ E with quasi-norm ‖x + iy‖ = ‖(|x|2 + |y|2)1/2‖E.

Then EC is a complex quasi-Banach space (see [26]). We call E a complex

quasi-Banach lattice if it is a complexification of some real quasi-Banach

lattice. Throughout the paper, we denote by E a complex quasi-Banach lattice

and by X a complex quasi-Banach space if we do not specify otherwise.

The following moduli of complex convexity of complex quasi-Banach space X

were introduced in [7]: for 0 < p < ∞ and ǫ ≥ 0, we define

HX
p (ǫ) = inf

{(
∫

T

‖x + eiθy‖pdm(θ)

)1/p

− 1 : ‖x‖ = 1, ‖y‖ ≥ ǫ

}

and

HX
∞(ǫ) = inf{sup{‖x + eiθy‖ : θ ∈ T} − 1 : ‖x‖ = 1, ‖y‖ ≥ ǫ},

where dm = 1
2π dθ is the normalized Lebesgue measure on T = [0, 2π].

Let f and g be non-negative, non-decreasing functions on [0, 1]. We write

g � f if there is K ≥ 1 such that g(ǫ/K) ≤ Kf(ǫ) for all 0 < ǫ < 1/K, and

we write f ∼ g if f � g and g � f (f and g are then said to be equivalent at

zero). It is well-known that for 0 < p < ∞, all the moduli HX
p are equivalent

at zero [7] and that there exists an absolute constant A > 0 such that for every

complex Banach space X and 0 < ǫ ≤ 1, we have [10],

(1.2) A(HX
∞(ǫ))2 ≤ HX

1 (ǫ) ≤ HX
∞(ǫ).

A complex quasi-Banach space X is uniformly C-convex if HX
∞(ǫ) > 0 for

all ǫ > 0, and it is said to be uniformly PL-convex if HX
p (ǫ) > 0 for all ǫ > 0

and for some 0 < p < ∞. By inequalities (1.2), a complex Banach space is

uniformly C-convex if and only if it is uniformly PL-convex.

A quasi-Banach space is said to be g-uniformly PL-convex if HX
1 � g holds.

If g(ǫ) = ǫr for some 2 ≤ r < ∞ we say that a quasi-Banach space X is

r-uniformly PL-convex (or uniformly PL-convex of power type ǫr).

Given 0 < p < ∞, it can be shown (cf. [7]) that E is r-uniformly PL-convex if

and only if there exists λ > 0 such that

(1.3)

(
∫

T

‖x + eiθy‖p dm(θ)

)1/p

≥ (‖x‖r + λ‖y‖r)1/r

for all x and y in E. We shall denote the largest possible number of λ by Ir,p(E).
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Let D denote the open unit disc in the complex plane. For a complex quasi-

Banach X , a function f : D → X is said to be analytic if

f(z) =

∞
∑

n=0

anzn, z ∈ D (an ∈ X, n ≥ 0),

where the series converges uniformly in every compact subset of D. For

0 < p ≤ ∞ we let

Hp(X) = {f : D → X analytic : ‖f‖Hp(X) < ∞},

where

‖f‖Hp(X) = sup
0≤r<1

(
∫

T

‖f(reiθ)‖pdm(θ)

)1/p

and

‖f‖H∞(X) = sup{‖f(z)‖ : z ∈ D}.

It is easy to check that Hp(X) is a quasi-Banach space for 0 < p ≤ ∞. Recall

that a quasi-Banach space X is said to have the analytic Radon–Nikodym

property (ARNP for short) if there exists 0 < p ≤ ∞ such that every function

f ∈ Hp(X) has a.e. radial limits on T in X , namely, if limr→1 f(reiθ) exists a.e.

on T in X .

Another notion used in this paper is the uniform H-convexity [32]. For

0 < p < ∞ and 0 < ǫ < ∞, let

hX
p (ǫ) = inf{‖f‖Hp(X) − 1 : ‖f(0)‖ = 1, ‖f − f(0)‖Hp(X) ≥ ǫ}.

Then X is said to be uniformly Hp-convex if hX
p (ǫ) > 0 for every ǫ > 0.

It is well-known [33] that for 0 < p < q < ∞, X is uniformly Hp-convex if and

only if it is uniformly Hq-convex. Moreover we have

C1h
X
p (C1ǫ

q/p) ≤ hX
q (ǫ) ≤ C2h

X
p (C2ǫ) (0 < ǫ ≤ 1),

where C1, C2 are two constants depending only on p, q and X . Thus we may

say that X is uniformly H-convex if it is uniformly Hp-convex for some

0 < p < ∞.

Given a Banach space X , recall that the modulus of convexity δX is defined

by

δX(ǫ) = inf{1 − ‖(x + y)/2‖ : x, y ∈ BX , ‖x − y‖ = ǫ},

for 0 ≤ ǫ ≤ 2, where BX is the unit ball of the Banach space X , consisting of

all elements x ∈ X with ‖x‖ ≤ 1. A Banach space X is said to be uniformly
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convex if δX(ǫ) > 0 for all ǫ > 0. We shall use the monotonicity property of

δX [8, 26], that is, both ǫ 7→ δX(ǫ) and ǫ 7→ δX(ǫ)/ǫ are increasing functions on

(0, 2].

Let us briefly sketch the contents of this paper. In Section 2, we study basic

properties of moduli of monotonicity in quasi-Banach lattices. First we show

that if a quasi-Banach lattice is uniformly monotone, then it does not contain

any lattice isomorphic c0-copy, so it is shown to be order continuous. Next

we show that every uniformly monotone quasi-Banach space is α-convex for

some 0 < α < ∞. In particular, it is shown that if a quasi-Banach space X is

isomorphic to a uniformly monotone quasi-Banach lattice then ℓ∞ can not be

finitely λ-representable in X for any λ ≥ 1.

In Section 3, we establish the relations between the uniform complex convexity

and uniform monotonicity. More precisely, we show that if E is a complex

quasi-Banach lattice with M (α)(E) = 1 for some α > 0, then the following are

equivalent (i) E is uniformly PL-convex; (ii) E is uniformly monotone; and (iii)

E is uniformly C-convex.

In Section 4, we investigate the relation between uniform monotonicity of a

Banach lattice and uniform convexity of its convexification. First we show that

if E is a uniformly monotone Banach lattice, then its p-convexification E(p)

(2 ≤ p < ∞) is uniformly convex, extending analogous results for Köthe function

spaces in [14]. Next we study basic quantitative properties of the modulus of

monotonicity and moduli of convexity. Applying comparison of two moduli and

Xu’s idea in [34], we show that if E is a quasi-Banach lattice with M (α)(E) = 1

for some α > 0, then the following are equivalent: (i) E is uniformly H-convex

of power type; (ii) E is uniformly PL-convex of power type; (iii) E is uniformly

C-convex of power type; and (iv) E is uniformly monotone of power type. We, in

addition, get the Maurey–Pisier type theorem for a quasi-Banach lattice so that

for any complex quasi-Banach lattice E the following properties are equivalent:

(1) E is q-concave for some q < ∞;

(2) E has a lattice renorming under which it is uniformly H-convex;

(3) E has a lattice renorming under which it is uniformly PL-convex;

(4) E has a lattice renorming under which it is uniformly C-convex of power

type;

(5) E has a lattice renorming under which it is uniformly monotone of power

type;

(6) for any λ ≥ 1, ℓ∞ is not finitely λ-representable in E;

(7) for any λ ≥ 1, ℓ∞ is not lattice finitely λ-representable in E; and
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(8) E has the super-ARNP ;

We conclude this section with an extension of Theorem 4.4 in [34], so it is

shown that if E is a σ-order continuous symmetric quasi-Banach function space

on (0,∞) with Mα(E) = 1 and if E is uniformly monotone of power type,

then LE(M, τ) is uniformly H-convex for any semifinite von Neumann algebra

(M, τ). For the definition of LE(M, τ), see [34].

In the last section, we study the lifting property of uniform PL-convexity.

Suppose that (X, ‖ · ‖X) is a continuously quasi-normed space and suppose also

that E is a complex quasi-Köthe function space with M (α)(E) = 1 for some

α > 0. Then we show that the quasi-Köthe-Bochner function space E(X) is

uniformly PL-convex if and only if both E and X are uniformly PL-convex.

2. Modulus of monotonicity for quasi-Banach lattices

The modulus of monotonicity in Banach lattice has been introduced in [16] and

[23]. Following these ideas we define the modulus of p-monotonicity ΠE
p ,

0 < p < ∞, of a (real or complex) quasi-Banach lattice E as follows: for each

ǫ ≥ 0,

ΠE
p (ǫ) = inf{‖(|x|p + |y|p)1/p‖ − 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ ≥ ǫ}.

It is clear that ǫ 7→ ΠE
p (ǫ) is increasing and p 7→ ΠE

p (ǫ) is decreasing. It is

also easy to see [23] that for each ǫ > 0,

ΠE
p (ǫ) = inf{‖(|x|p + |y|p)1/p‖ − 1 : x, y ∈ E and ‖x‖ = 1, ‖y‖ = ǫ}.

By the definition we have for every p ≥ 1,

(2.1) ΠE
p (ǫ) ∼ ΠE(1/p)

1 (ǫp).

We say that a quasi-Banach lattice E is uniformly p-monotone if ΠE
p (ǫ) > 0

for all ǫ > 0. A quasi-Banach lattice E is said to be uniformly monotone if it

is uniformly 1-monotone. By definition, a real quasi-Banach lattice is uniformly

p-monotone if and only if its complexification is uniformly p-monotone. In

particular, their moduli of p-monotonicity are the same.

We start with a generalization to quasi-Banach lattices of a result on a copy

of c0 in Banach lattices (cf. Theorem 1.a.5. in [26]). Recall that a real quasi-

Banach lattice E is said to be complete (resp. σ-complete) if every order

bounded set (resp. sequence) in E has a least upper bound.
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Proposition 2.1: A real quasi-Banach lattice E which is not σ-complete con-

tains a lattice isomorphic c0-copy.

Proof: By the Aoki–Rolewicz theorem, we may assume that a quasi-norm of

E is p-norm 0 < p ≤ 1. Let {xn}∞n=1 ⊂ E be an order bounded sequence which

does not have a least upper bound. By replacing {xn}∞n=1 with the sequence

{∨n
j=1 xj}∞n=1 we can assume without loss of generality that 0 ≤ x1 ≤ · · · ≤

xn ≤ · · · ≤ x, for some non-zero element x in E. Notice that the cone of

positive elements is closed in E. So if {xn}∞n=1 converges in this norm to an

element of E then this limit is also the least upper bound of {xn}∞n=1. This

contradicts to the fact that {xn}∞n=1 has no least upper bound in E.

Hence there is an α > 0 and a sequence {xnj}∞j=1 of {xn}∞n=1 so that the

vectors uj = xnj+1 − xnj satisfy ‖uj‖p ≥ α, uj ≥ 0 and
∑j

k=1 uk ≤ x for all j.

We claim that for every ǫ > 0 and every β > 0, there is a subsequence

{vk}∞k=1 of {uj}∞j=1 so that ‖(vk − βv1)
+‖p ≥ α − ǫ for all k > 1. Indeed,

if this is not true then there is a subsequence {wk}∞k=1 of {uj}∞j=1 such that

‖(wk − βwj)
+‖p < α − ǫ for all k > j. It follows that for any k we have

‖x‖p ≥
∥

∥

∥

∥

k
∑

i=1

wi

∥

∥

∥

∥

p

= β−p

∥

∥

∥

∥

kwk+1 −
k
∑

i=1

(wk+1 − βwi)

∥

∥

∥

∥

p

= β−p

∥

∥

∥

∥

kwk+1 −
k
∑

i=1

(wk+1 − βwi)
+ +

k
∑

i=1

(wk+1 − βwi)
−

∥

∥

∥

∥

p

.

Since kwk+1 ≥∑k
i=1(wk+1 − βwi)

+ we get the following

‖x‖p ≥ β−p

∥

∥

∥

∥

kwk+1 −
k
∑

i=1

(wk+1 − βwi)
+

∥

∥

∥

∥

p

≥ β−p(kα − k(α − ǫ)) = β−pkǫ

and this is a contradiction for large k.

Now fix 0 < ǫ < α/2 and construct a sequence {vk}∞k=1 of {uj}∞j=1

so that ‖(vk − βv1)
+‖p ≥ α − ǫ for all k > 1, where βp = 2‖x‖p/ǫ. Put

y1 = β−1(βv1 − x)+ and yk = (vk −βv1)
+ for k > 1. It is clear that y1 ∧ yk = 0

for k > 1. By the choice of {vk}∞k=1 we also get yn ≥ 0,
∑n

k=1 yk ≤
∑n

k=1 vk ≤ x

for all n ≥ 1, ‖yk‖p ≥ α − ǫ for k > 1 and

‖y1‖p = ‖(v1 − β−1x)+‖p ≥ ‖v1‖p − β−p‖x‖p − ‖(v1 − β−1x)−‖p ≥ α − ǫ.

Applying this argument again to the sequence {yk}∞k=2, instead of {uj}∞j=1,

and with ǫ/2, instead of ǫ, we can produce a new sequence for which the norms
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of its elements are ≥ (α − ǫ − ǫ/2)1/p, partial sum of elements is ≤ x and the

first two elements are mutually disjoint and also disjoint from the rest of the

sequence. Continuing by induction we obtain a sequence {zk}∞k=1, of mutually

disjoint elements of E, so that ‖zk‖p ≥ α − 2ǫ and 0 ≤ zk ≤ x for all k. This

sequence is clearly equivalent to the unit vector basis of c0.

A real quasi-Banach lattice E is said to be order continuous (resp. σ-order

continuous) if for every decreasing net (resp. sequence) {xα}α∈A in E with
∧

α∈A xα = 0, limα ‖xα‖ = 0.

In view of Proposition 2.1, the next two results can be proved analogously to

Propositions 1.a.7 and 1.a.8 in [26].

Proposition 2.2: A σ-complete real quasi-Banach lattice E, which is not σ-

order continuous, contains a subspace lattice isomorphic to ℓ∞.

Proposition 2.3: Let E be a real quasi-Banach lattice. Then the following

assertions are equivalent:

(1) E is σ-complete and σ-order continuous;

(2) Every bounded increasing sequence in E converges in the quasi-norm

topology of E;

(3) E is order continuous; and

(4) E is order continuous and order complete.

We shall say that a complex quasi-Banach lattice EC is complete (resp.

σ-complete, order continuous) if E is complete (resp. σ-complete, order

continuous). Then it is easy to see that Proposition 2.1, 2.2 and 2.3 hold for a

complex quasi-Banach lattice.

Proposition 2.4: Let 1 ≤ p < ∞. Suppose that E is a uniformly p-monotone

(real or complex) quasi-Banach lattice. Then E does not contain a lattice

isomorphic c0-copy. In particular, uniformly p-monotone quasi-Banach lattice

is order continuous.

Proof: Suppose, by contradiction, that E is uniformly p-monotone but that

there is a lattice isomorphism T : c0 → E such that there is a positive constant

K with

K‖x‖ ≤ ‖Tx‖ ≤ ‖T ‖‖x‖

for all x ∈ c0. Then choose a sequence (xn) in Sc0 with ‖Txn‖ ≥ (1/2)‖T ‖ such

that limn→∞ ‖Txn‖ = ‖T ‖. Further we choose a sequence (yn) in Bc0 with

‖yn‖c0 ≥ 1/2 so that ‖|xn| + |yn|‖c0 = 1 for all n ∈ N. Thus for every n ∈ N,
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‖Txn‖(1 + ΠE
p (‖Tyn‖/‖Txn‖) ≤ ‖(|Txn|p + |Tyn|p)1/p‖

≤ ‖(|Txn| + |Tyn|)‖ ≤ ‖T (|xn| + |yn|)‖
≤ ‖T ‖‖|xn| + |yn|‖c0 ≤ ‖T ‖.

By taking the limit we obtain that

lim
n→∞

ΠE
p (‖Tyn‖/‖Txn‖) = 0.

Since 1/2 ≤ ‖yn‖c0 ≤ K−1‖Tyn‖, we have

ΠE
p (K/2‖T ‖) ≤ ΠE

p (‖Tyn‖/‖Txn‖)

for all n ∈ N. This implies that ΠE
p (K/2‖T ‖) = 0, which is a contradiction

to the fact that E is uniformly p-monotone. Then Proposition 2.1, 2.2 and 2.3

imply that E is order continuous.

Lemma 2.5: Suppose that E is an order continuous (real or complex) quasi-

Banach lattice with M (α)(E) = 1 for some α > 0. Let p ≥ 1 and let x, y

be non-zero positive elements in E. Then there are δ = δ(‖x‖, ‖y‖) > 0 and

non-zero z ∈ E+ such that z ≤ y, ‖z‖ ≥ ‖y‖/2 and

(xp + yp)1/p ≥ x + δz.

In particular, we can take δ(‖x‖, ‖y‖) = (2p‖x‖p+‖y‖p)1/p−2‖x‖
‖y‖ .

Proof: In the case of α ≥ 1, E is a Banach lattice and the result has already

been shown in [23]. So assume that 0 < α < 1. Let G be an ideal of E with

a weak unit such that x, y ∈ G. Following [34], since E is order continuous,

G is order isomorphic to a quasi-Banach lattice of measurable functions on a

probability space (Ω, Σ, µ) containing L∞(µ). Since M (α)(E) = 1 holds, it

follows that G →֒ Lα(µ) (inclusion of norm 1). Therefore we can assume that

E itself is a separable quasi-Banach lattice of measurable functions in (Ω, Σ, µ)

such that

L∞(µ) →֒ E →֒ Lα(µ) (inclusions of norm 1).

Let

A =
{

t ∈ Ω : x(t) <
k‖x‖
‖y‖ y(t)

}

, k =
( 2α

2α − 1

)1/α

,

we get

‖x‖ ≥ ‖xχΩ\A‖ ≥ k‖x‖
‖y‖ ‖yχΩ\A‖.
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Taking z = yχA, z ≤ y and

‖z‖α ≥ ‖y‖α − ‖yχΩ\A‖α ≥
(‖y‖

2

)α

.

On the other hand, notice that for each ǫ > 0 there is δ1 = δ1(ǫ) > 0 such that

for each a ≥ ǫ,

(1 + ap)1/p ≥ 1 + δ1a.

In fact, it is easy to check that we can take

δ1(ǫ) =
(1 + ǫp)1/p − 1

ǫ
.

Hence if we take δ = δ1(‖y‖/‖2x‖) then

(xp + yp)1/p = (xpχA + ypχA)1/p + (xpχΩ\A + ypχΩ\A)1/p

≥ xχA + δyχA + xχΩ\A

= x + δz,

and we obtain the desired result.

By Proposition 2.4 and Lemma 2.5, we immediately obtain the following

result.

Proposition 2.6: Suppose that E is a (real or complex) quasi-Banach lattice

with M (α)(E) = 1 for some α > 0. Then for each 1 ≤ p < ∞, E is uniformly

p-monotone if and only if E is uniformly monotone. In particular we obtain the

following inequalities: for each 1 ≤ p < ∞ and for each ǫ > 0,

ΠE
1 (ǫp) � ΠE

p (ǫ) ≤ ΠE
1 (ǫ).

Observe that a Banach lattice E is uniformly monotone with ΠE
p � ǫr for

some 1 ≤ p < ∞ and for some r ≥ 1 if and only if there is a λ > 0 such that

‖(|x|p + |y|p)1/p‖ ≥ (‖x‖r + λ‖y‖r)1/r

for all x and y in E. We shall denote the largest possible value of λ by Jr,p(E).

Then, by induction, it is clear that

(2.2)

∥

∥

∥

∥

( n
∑

k=1

|xk|p
)1/p∥

∥

∥

∥

≥
(

‖x1‖r + Jr,p(E)

n
∑

k=2

‖xk‖r

)1/r

for every x1, . . . , xn in E. This is an analogue of formula (1.3) concerning

moduli of r-uniformly PL-convexity. We shall use this fact in the proofs of

Propositions 2.8 and 4.3.
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Recall that for λ ≥ 1, ℓ∞ is lattice finitely λ-representable in a real (resp.

complex) quasi-Banach lattice E if given ǫ > 0 and n ∈ N there exist xi ≥ 0

(1 ≤ i ≤ n) so that xi ∧ xj = 0 (i 6= j), ‖xi‖ ≤ λ (1 ≤ i ≤ n) and whenever

a1, . . . , an ∈ R(resp. C), we have (cf. [21])

max
1≤i≤n

|ai| ≤ ‖a1x1 + · · · + anxn‖ ≤ λ(1 + ǫ) max
1≤i≤n

|ai|.

Notice that ℓ∞ cannot be a lattice finitely 1-represented in a uniformly monotone

quasi-Banach lattice E. Then by Theorem 4.1 in [21], E is α-convex for some

0 < α < ∞. This proves the next proposition.

Proposition 2.7: Suppose that E is a (real or complex) uniformly monotone

quasi-Banach lattice. Then E is α-convex for some 0 < α < ∞.

For λ ≥ 1, ℓ∞ is said to be finitely λ-representable in a real (resp. complex)

quasi-Banach space X if for every ǫ > 0 and every n ∈ N there exist xi ∈ X

(1 ≤ i ≤ n) so that whenever a1, . . . , an ∈ R (resp. C), we have

max
1≤i≤n

|ai| ≤ ‖a1x1 + · · · + anxn‖ ≤ λ(1 + ǫ) max
1≤i≤n

|ai|

(for more details, see [9]). Notice that if ℓ∞ can not be finitely λ-representable in

a quasi-Banach space X for every λ ≥ 1, then X does not contain any subspace

which is isomorphic to c0.

In the case that a modulus of monotonicity is of power type, we obtain the

next proposition (cf. Proposition 2.4).

Proposition 2.8: Let X be a (real or complex) quasi-Banach space. Suppose

that X is isomorphic to a quasi-Banach lattice E which is uniformly monotone

of power type. Then ℓ∞ cannot be finitely λ-representable in X for any λ ≥ 1.

In particular, X does not contain any subspace which is isomorphic to c0.

Proof: Notice that if a quasi-Banach space X1 is isomorphic to a quasi-Banach

space X2 and if ℓ∞ is finitely λ-representable in X1 for some λ ≥ 1 then ℓ∞ is

finitely λ′-representable in X2 for some λ′ ≥ 1. So we have only to show that

ℓ∞ is not finitely λ-representable in E for any λ ≥ 1.

Notice that by Proposition 2.7, E is α-convex for some 0 < α < ∞. Since the

modulus of monotonicity ΠE
2 is of power type ǫr, by equation (2.2), there is a

positive constant J > 0 such that

(2.3)

∥

∥

∥

∥

( n
∑

k=1

|xk|2
)1/2∥

∥

∥

∥

≥
(

‖x1‖r + J
n
∑

k=2

‖xk‖r

)1/r



70 H. J. LEE Isr. J. Math.

for every x1, . . . , xn in E.

Recall that by the Khinchin inequality (see [9]) and by the Krivine functional

calculus, for any 0 < p < ∞, there are constants Ap and Bp depending only on

p such that for every finite sequence x1, . . . , xn in E,

(2.4)

Ap

∥

∥

∥

∥

( n
∑

j=1

|xj |2
)1/2∥

∥

∥

∥

≤
∥

∥

∥

∥

(

1

2n

∑

ǫi=±1

∣

∣

∣

∣

n
∑

j=1

ǫjxj

∣

∣

∣

∣

p)1/p∥
∥

∥

∥

≤ Bp

∥

∥

∥

∥

( n
∑

j=1

|xj |2
)1/2∥

∥

∥

∥

where
∑

ǫi=±1 means the sum over all choices of ǫ1, . . . , ǫn = ±1.

Suppose, on the contrary, that ℓ∞ is finitely λ-representable in E for some

λ ≥ 1. So for every n ∈ N, there exist xi ∈ E (1 ≤ i ≤ n) so that whenever

a1, . . . , an ∈ C, we have

max
1≤i≤n

|ai| ≤ ‖a1x1 + · · · + anxn‖ ≤ 2λ max
1≤i≤n

|ai|.

Then

∥

∥

∥

∥

(

1

2n

∑

ǫi=±1

∣

∣

∣

∣

n
∑

j=1

ǫjxj

∣

∣

∣

∣

α)1/α∥
∥

∥

∥

≥ Aα

∥

∥

∥

∥

( n
∑

j=1

|xj |2
)1/2∥

∥

∥

∥

≥ Aα

(

‖x1‖r + J

n
∑

k=2

‖xk‖r

)1/r

≥ AαJn1/r.

Hence we have for every n,

AαJn1/r ≤
∥

∥

∥

∥

(

1

2n

∑

ǫi=±1

∣

∣

∣

∣

n
∑

j=1

ǫjxj

∣

∣

∣

∣

α) 1
α
∥

∥

∥

∥

≤ M (α)(E)

(

1

2n

∑

ǫi=±1

∥

∥

∥

∥

n
∑

j=1

ǫjxj

∥

∥

∥

∥

α) 1
α

≤ 2M (α)(E)λ,

which is a contradiction and this completes the proof.

As an example, we shall compute the moduli of monotonicity of Lp.

Example 2.9: Let 0 < p, q < ∞ and E be an Lp-space over a measure space

(Ω, Σ, µ). Suppose that 0 < p ≤ q ≤ r < ∞. Then the Minkowski inequality

shows that for every x, y ∈ E,

‖(|x|q + |y|q) 1
q ‖p =

(
∫

Ω

(|x(t)|q + |y(t)|q)p/qdt

)1/p

≥ (‖x‖q
p + ‖y‖q

p)
1/q ≥ (‖x‖r

p + ‖y‖r
p)

1/r .
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Hence ΠLp

q (ǫ) � ǫq and Jr,q(L
p) = 1 for all 0 < p ≤ q ≤ r < ∞. Then

ΠLp

2 (ǫ) � ǫ2 for all 0 < p ≤ 2 and ΠLp

2 (ǫ) ≥ ΠLp

p (ǫ) � ǫp for all p ≥ 2.

3. Uniform monotonicity and uniform complex convexity in quasi-

Banach Lattices

Let E be a complex quasi-Banach lattice. Then it is easy to see that for each

x, y ∈ E with ‖x‖ = 1, ‖y‖ = ǫ,

‖|x| + |y|‖ ≥ sup{‖x + ζy‖ : |ζ| ≤ 1} ≥ 1 + HE
∞(ǫ).

Hence ΠE
1 (ǫ) ≥ HE

∞(ǫ) and the next result follows immediately.

Proposition 3.1: Let E be a complex quasi-Banach lattice. Then for every

0 < p < ∞ and every ǫ > 0,

ΠE
1 (ǫ) ≥ HE

∞(ǫ) ≥ HE
p (ǫ).

Proposition 3.2: Let E be a complex quasi-Banach lattice with M (α)(E) = 1

for some α > 0. Then

ΠE
1 (ǫ) ≥ HE

∞(ǫ) ≥ HE
min{1,α}(ǫ) ≥ ΠE

2

(

ǫ
√

I2,α(C)
)

.

Proof: For the case of α ≥ 1, E is a Banach lattice and this inequality was

shown in [23]. So we may assume that 0 < α < 1. We have only to prove the

third inequality. Note that we may assume that ΠE
2 (ǫ) > 0 for every ǫ > 0.

Using the same idea as in the proof of Lemma 2.5, we may assume that E is

itself a separable quasi-Banach lattice of measurable functions on a probability

measure space (Ω, Σ, µ) such that

L∞(µ) →֒ E →֒ Lα(µ) (inclusions of norm 1).

By [7], HC
α is of power type ǫ2. So there is a positive number I = I2,α(C)

such that for any complex numbers z1, z2,

(
∫

T

|z1 + eiθz2|αdm(θ)

)1/α

≥ (|z1|2 + I|z2|2)1/2.

Now, applying the Krivine functional calculus, we get, for any x, y in E,

(
∫

T

|x + eiθy|αdm(θ)

)1/α

≥ (|x|2 + I|y|2)1/2.
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Consider the simple function on [0, 2π]

f(θ) =

n
∑

k=1

akχGk
(θ),

where Gk are mutually disjoint Lebesgue measurable subsets of [0, 2π] and

ak ∈ E. Then the α-convexity of E with M (α) = 1 gives the following
∥

∥

∥

∥

( n
∑

i=1

|ai|αm(Gi)

)1/α∥
∥

∥

∥

≤
( n
∑

i=1

‖ai‖αm(Gi)

)1/α

.

Hence for every simple function f : [0, 2π] → E,

(3.1)

∥

∥

∥

∥

(
∫

T

|f |αdm

)1/α∥
∥

∥

∥

≤
(
∫

T

‖f‖αdm

)1/α

.

Now we find a sequence of simple functions that approximate the element |x +

eiθy|. For each n, choose

ak(t) = inf
{

|x(t) + eiθy(t)| : θ ∈
[2π(k − 1)

2n
,
2πk

2n

)

, θ ∈ Q

}

, k = 1, . . . , 2n.

With

fn(θ, t) =

2n
∑

k=1

ak(t)χ[ 2π(k−1)
2n , 2πk

2n )(θ), θ ∈ [0, 2π],

we obtain 0 ≤ fn(θ, t) ↑ |x(t) + eθy(t)| for every θ ∈ T and for every t ∈ Ω.

Then applying the monotone convergence theorem, we have for each t ∈ Ω
∫

T

fn(θ, t)αdm(θ) ↑
∫

T

|x(t) + eθy(t)|αdm(θ).

Using Proposition 2.3 and 2.4, we have

lim
n→∞

‖fn(θ, ·)‖α = ‖x + eiθy‖α

and

lim
n→∞

∥

∥

∥

∥

(
∫

T

fn(θ, ·)αdm(θ)

)1/α∥
∥

∥

∥

=

∥

∥

∥

∥

(
∫

T

|x + eiθy|αdm(θ)

)1/α∥
∥

∥

∥

.

Putting fn instead of f in inequality (3.1) and taking a limit, we have, for

each x ∈ SE and y ∈ E with ‖y‖ ≥ ǫ,

(
∫

T

‖x + eiθy‖αdm

)1/α

≥
∥

∥

∥

∥

(
∫

T

|x + eiθy|αdm

)1/α∥
∥

∥

∥

≥
∥

∥(|x|2 + I|y|2)1/2
∥

∥ ≥ 1 + ΠE
2 (

√
Iǫ),

and we obtain the desired result.
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It is shown in [10] that if a sequence {xn} is unconditionally summable in a

quasi-Banach space X , then
∑

n HX
∞(‖xn‖) < ∞. We obtain here the monotone

version of this result by Proposition 3.2.

Corollary 3.3: Suppose that E is a (real or complex) quasi-Banach lattice

with M (α)(E) = 1. Then for every unconditionally summable sequence {xn} in

E,
∑

n

ΠE
2 (‖xn‖) < ∞.

Propositions 2.6 and 3.2 give the following theorem, which is a generalization

of the corresponding results in [17, 23].

Theorem 3.4: Let E be a complex quasi-Banach lattice with M (α)(E) = 1 for

α > 0. Then the following properties are equivalent:

(1) E is uniformly PL-convex;

(2) E is uniformly monotone; and

(3) E is uniformly C-convex.

Recall that, in quasi-Banach lattices without the condition M (α) = 1, the

uniform C-convexity does not necessarily imply the uniform PL-convexity (see

[24] (cf. [28])).

4. Uniform monotonicity and uniform convexity of its p-convexifica-

tion in quasi-Banach lattices

We start with an auxiliary inequality for complex numbers. The analogous

inequality for real numbers is well known (cf. Lemma 1.f.2 in [26]).

Lemma 4.1: Let q ≥ 2; then for any 1 < p < ∞, there exists a constant

C = C(p, q) > 0 such that for every choice of complex numbers s and t,

(4.1)
(
∣

∣

∣

s − t

C

∣

∣

∣

q

+
∣

∣

∣

s + t

2

∣

∣

∣

q)1/q

≤
( |s|p + |t|p

2

)1/p

.

Proof: Notice that the left (resp. right) side of inequality (4.1) is decreasing

(resp. increasing) function of q ≥ 2 (resp. p > 1) for fixed s, t in C. Hence it

suffices to prove the inequality for q = 2 and 1 < p < 2. Notice also that

(4.2)

∣

∣

∣

s − t

C

∣

∣

∣

2

+
∣

∣

∣

s + t

2

∣

∣

∣

2

=
(1

4
+

1

C2

)

(|s|2 + |t|2) +
(1

2
− 2

C2

)

Re(st̄)

≤
(1

4
+

1

C2

)

(|s|2 + |t|2) +
(1

2
− 2

C2

)

|s||t|.
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Thus, for C > 2, the expression (4.2) is maximized when s and t are positive

real numbers. Therefore it follows from the real case, Lemma 1.f.2 in [26], that

for every 1 < p < 2, there is a constant C > 2 such that for any s, t in C,

(∣

∣

∣

s − t

C

∣

∣

∣

2

+
∣

∣

∣

s + t

2

∣

∣

∣

2)1/2

≤
( |s|p + |t|p

2

)1/p

.

Hence we obtained the desired result.

The next three results are partial generalizations of Corollary 2 in [16] from

Köthe function spaces to Banach lattices.

Proposition 4.2: Suppose that E is a uniformly monotone (real or complex)

Banach lattice. Then E(p) is uniformly convex for p ≥ 2 and

δE(p)(ǫ) � ΠE
1 (ǫp).

Proof: We follow the notation of p-convexification of a Banach lattice in [26].

Let (E(p),⊕,⊙, ||| · |||) be a p-convexification of E.

Let x, y be elements of in the unit sphere of E(p) with

|||x ⊕ (−y)||| = ‖(x1/p − y1/p)p‖1/p = ǫ.

Then by Lemma 4.1 and the Krivine functional calculus, setting p = q ≥ 2, we

obtain

1 ≥ ‖x‖ + ‖y‖
2

≥
∥

∥

∥

|x| + |y|
2

∥

∥

∥
≥
∥

∥

∥

∣

∣

∣

x1/p + y1/p

2

∣

∣

∣

p

+
∣

∣

∣

x1/p − y1/p

C

∣

∣

∣

p∥
∥

∥

≥
∥

∥

∥

∣

∣

∣

x1/p + y1/p

2

∣

∣

∣

p∥
∥

∥

[

1 + ΠE
1

(

∥

∥

∥

∣

∣

∣

x1/p−y1/p

2

∣

∣

∣

p∥
∥

∥

Cp
∥

∥

∥

∣

∣

∣

x1/p+y1/p

2

∣

∣

∣

p∥
∥

∥

)]

≥
∥

∥

∥

∣

∣

∣

x1/p + y1/p

2

∣

∣

∣

p∥
∥

∥

[

1 + ΠE
1

( ǫp

(2C)p

)]

.

Therefore

|||(x ⊕ y) ⊙ 2−1||| =
∥

∥

∥

∣

∣

∣

x1/p + y1/p

2

∣

∣

∣

p∥
∥

∥

1/p

≤
( 1

1 + ΠE
1

(

ǫp

(2C)p

)

)1/p

,

and the proof is done.

Notice in Proposition 4.2 that the modulus of convexity is of power type if

ΠE
p is of power type. Moreover, in the case that the modulus of monotonicity

ΠE
p is of power type, we obtain the stronger version of the previous result.
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Proposition 4.3: Suppose that E is a (real or complex) Banach lattice with

ΠE
2 (ǫ) � ǫr. Then E(p) is uniformly convex with modulus of convexity

δE(p)(ǫ) � ǫpr for all p > 1.

Proof: We follow the notation of p-convexification of a Banach lattice in [26].

Let (E(p),⊕,⊙, ||| · |||) be a p-convexification of E.

Let x, y be elements in the unit sphere of E(p) with

|||x ⊕ (−y)||| =
∥

∥(x1/p − y1/p)p
∥

∥

1/p
= ǫ.

For p > 1, taking q = 2p in Lemma 4.1, we obtain, by the Krivine functional

calculus,

(
∣

∣

∣

x1/p − y1/p

C

∣

∣

∣

2p

+
∣

∣

∣

x1/p + y1/p

2

∣

∣

∣

2p)1/2

≤
( |x| + |y|

2

)

.

Since the modulus of monotonicity is of power type ǫr, by the equation (2.2),

there is a positive constant J > 0 such that

∥

∥

∥

∥

( n
∑

k=1

|xk|2
)1/2∥

∥

∥

∥

≥
(

‖x1‖r + J

n
∑

k=2

‖xk‖r

)1/r

for every x1, . . . , xn in E. This gives the following inequalities:

1 ≥ ‖x‖ + ‖y‖
2

≥
∥

∥

∥

|x| + |y|
2

∥

∥

∥
≥
∥

∥

∥

(∣

∣

∣

x1/p + y1/p

2

∣

∣

∣

2p

+
∣

∣

∣

x1/p − y1/p

C

∣

∣

∣

2p)1/2∥
∥

∥

≥
(∥

∥

∥

∣

∣

∣

x1/p + y1/p

2

∣

∣

∣

p∥
∥

∥

r

+ J
∥

∥

∥

∣

∣

∣

x1/p − y1/p

C

∣

∣

∣

p∥
∥

∥

r)1/r

≥
(∥

∥

∥

∣

∣

∣

x1/p + y1/p

2

∣

∣

∣

p∥
∥

∥

r

+ J
( ǫ

C

)pr)1/r

.

Therefore,

|||(x ⊕ y) ⊙ 2−1||| =
∥

∥

∥

∣

∣

∣

x1/p + y1/p

2

∣

∣

∣

p∥
∥

∥

1/p

≤
(

1 − J
( ǫ

C

)pr)1/pr

,

and this completes the proof.

It is shown in [14] that if E is a uniformly convex Banach lattice, it is also

uniformly monotone. In the following proposition, we refine this fact.

Proposition 4.4: Suppose that a (real or complex) Banach lattice E is uni-

formly convex. Then it is uniformly monotone. In particular, we get for every

0 < ǫ < 1,

ΠE
1 (ǫ) ≥ 2δE(ǫ).
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Proof: Let 0 < ǫ ≤ 1 and let ‖x‖ = 1 and ‖y‖ = ǫ. Consider the following

vectors in E

S = |x| + |y|, a =
S

‖S‖ and b =
S − 2|y|
‖S‖ .

Then a, b ∈ BE and so

∥

∥

∥

a + b

2

∥

∥

∥
≤ 1 − δE(‖a − b‖).

Thus
‖x‖
‖S‖ ≤ 1 − δE

(2‖y‖
‖S‖

)

,

that is

δE

(2‖y‖
‖S‖

)

≤ 1 − ‖x‖
‖S‖ =

‖S‖ − ‖x‖
‖S‖ .

Notice that 2/‖S‖ ≥ 1 so that by the monotonicity of δE(ǫ)/ǫ,

δE(‖y‖)
‖y‖ ≤

δE( 2
‖S‖‖y‖)
2

‖S‖‖y‖
.

It follows that

2δE(‖y‖) ≤ ‖S‖ · δE

(2‖y‖
‖S‖

)

≤ ‖S‖ − ‖x‖.

Therefore

1 + 2δE(ǫ) ≤ ‖|x| + |y|‖,

and we obtain the desired result.

The following is a partial generalization of results in [14]. It should be recalled

that the modulus of convexity always satisfy (see [27])

lim sup
ǫ→0

δX(ǫ)/ǫ2 < ∞.

Therefore the modulus of convexity of power type should be of the form ǫr,

where r ≥ 2.

Corollary 4.5: Let E be a (real or complex) quasi-Banach lattice with

M (α)(E) = 1. Then the following are equivalent:

(1) E is uniformly monotone.

(2) E(p) is uniformly monotone for every 0 < p < ∞.

(3) E(p) is uniformly monotone for some 0 < p < ∞.

(4) E(p/α) is uniformly convex for every 2 ≤ p < ∞.

(5) E(p/α) is uniformly convex for some 2 ≤ p < ∞.
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Proof: We prove the implication (1) ⇒ (2). Suppose that E is uniformly

monotone. Then equation (2.1) and Proposition 2.6 imply that E(p) is uniformly

monotone for 0 < p ≤ 1. Notice that for 0 < q < 1 we have for every x and y in

E,

‖(|x|q + |y|q)1/q‖ ≥ ‖|x| + |y|‖.

Hence by the definition of modulus of monotonicity and q-convexification, we

have for every 0 < q < 1

ΠE(1/q)

1 (ǫq) � ΠE
1 (ǫ).

Hence E(p) is uniformly monotone for p > 1. The implication (1) ⇒ (2) is

proved.

The implication (2) ⇒ (3) is trivial. For the implication (3) ⇒ (4), assume

that E(p) is uniformly monotone for some 0 < p < ∞ and notice that E(1/α)

is a Banach lattice and it is uniformly monotone by the implication (1) ⇒ (2).

Then Proposition 4.2 implies that E(p/α) is uniformly convex for p ≥ 2.

The implication (4) ⇒ (5) is trivial. Finally, suppose that (5) holds. Notice

that E(p/α) is a Banach lattice. Then Proposition 4.4 shows that E(p/α) is

uniformly monotone. Then the implication (1) ⇒ (2) shows that E is uniformly

monotone and (5)⇒(1) is proved.

If we use Proposition 4.3 instead of Proposition 4.2 in the proof of Corol-

lary 4.5, we have the following

Corollary 4.6: Let E be a (real or complex) quasi-Banach lattice with

M (α)(E) = 1. Then the following are equivalent:

(1) E is uniformly monotone of power type;

(2) E(p) is uniformly monotone of power type for every 0 < p < ∞;

(3) E(p) is uniformly monotone of power type for some 0 < p < ∞;

(4) E(p/α) is uniformly convex of power type for every 1 < p < ∞;

(5) E(p/α) is uniformly convex of power type for some 1 < p < ∞;

In the next theorem we follow the outline of the proof of Theorem 3.2 in [34]

applying Proposition 4.3 instead of the fact that E is uniformly convex of power

type if M (p)(E) = M(q)(E) = 1 for some 1 < p, q < ∞.

Theorem 4.7: Let 0 < α ≤ q < ∞. Let E be a quasi-Banach lattice with

M (α)(E) = 1. Suppose that the modulus of monotonicity ΠE
2 is of power type

ǫq. Then E is uniformly H-convex. More precisely, for any f ∈ Hp(E), where

p = max{2, q(1 + [1/ min{α, 1}])}, we have

(‖f(0)‖p
E + δ‖f − f(0)‖p

Hp(E))
1/p ≤ ‖f‖Hp(E),
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where δ > 0 is a constant depending only on α and q. Consequently, hE
p (ǫ) � ǫp.

Proof: Notice that if α > 1 then E is a Banach lattice and M (1)(E) = 1 holds.

Hence we may assume that 0 < α ≤ 1. Let n = 1+[1/α], where [a] is the largest

integer less than or equal to the real number a. Then M (α)(E) = 1 implies that

M (αn)(E(n)) = 1 and E(n) is a Banach lattice. Since αn > 1, by Proposition 4.3

E(n) is uniformly convex of power type ǫp, where p = max(2, nq). Now let

f ∈ Hp(E(n)). Noting that (f(0), f − f(0)) is a martingale difference (for the

definition of a martingale, see [29]) with values in E(n) and using Proposition 2.4

in [29] we have

(‖f(0)‖p
E(n) + δ0‖f − f(0)‖p

Hp(E(n))
)1/p ≤ ‖f‖Hp(E(n)),

where δ0 is a constant depending only on α and q.

By Proposition 2.8, E does not have any c0 isomorphic copy. Then we may

use Theorem 3.1 in [34] so that we get n functions f1, . . . , fn with values in E(n)

such that

f(z) =

n
∏

k=1

fk(z), for every z ∈ D

and

‖f1‖Hp(E(n)) = ‖f‖Hp(E), ‖fk‖H∞(E(n)) = 1, for 2 ≤ k ≤ n.

M (α)(E) = 1 implies that for x, y in E,

‖x + y‖α
E ≤ ‖x‖α

E + ‖y‖α
E.

Applying the Hölder type inequality to the Banach lattice E(1/α) we obtain (see

Section 3 in [34]) that for any 0 < q0, q1, q < ∞ with 1/q = 1/q0 + 1/q1 and for

any x ∈ E(q0) and y ∈ E(q1),

‖xy‖E(q) ≤ ‖x‖E(q0)‖y‖E(q1) .

Thus we have

‖f − f(0)‖p
Hp(E)

≤
∥

∥

∥

∥

n
∏

k=1

fk −
n
∏

k=1

fk(0)

∥

∥

∥

∥

p

Hp(E)

=

∥

∥

∥

∥

n
∑

k=1

k−1
∏

j=1

fj(0)(fk − fk(0))
n
∏

i=k+1

fi

∥

∥

∥

∥

p

Hp(E)

≤ sup
0≤r<1

∫

T

[ n
∑

k=1

∥

∥

∥

∥

k−1
∏

j=1

fj(0)(fk − fk(0))

n
∏

i=k+1

fi

∥

∥

∥

∥

α

E

]p/α

dm

≤ n
p
α−1

n
∑

k=1

ck,
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where

ck =

k−1
∏

j=1

‖fj(0)‖p
E(n)‖(fk − fk(0))‖p

Hp(E(n))

n
∏

i=k+1

‖fi‖p
H∞(E(n))

.

Letting δ = δ0n
1−p/α and applying the Hölder type inequality again,

‖f(0)‖p
E + δ‖f − f(0)‖p

Hp(E)

≤
[ n
∏

k=1

‖fk(0)‖E(n)

]

+ δ0

n
∑

k=1

ck

=

[ n−1
∏

k=1

‖fk(0)‖E(n)

]

(‖fn(0)‖p
E(n) + δ0‖fn − fn(0)‖p

Hp(E(n))
) + δ0

n−1
∑

k=1

ck

≤
[ n−1
∏

k=1

‖fk(0)‖E(n)

]

‖fn‖p
Hp(E(n))

+ δ0

n−1
∑

k=1

ck

≤
[ n−1
∏

k=1

‖fk(0)‖E(n)

]

+ δ0

n−1
∑

k=1

ck

≤ · · · ≤ ‖f1(0)‖p
E(n) + δ0‖f1 − f1(0)‖p

Hp(E(n))

≤ ‖f1‖p
Hp(E(n))

= ‖f‖p
Hp(E).

This proves the theorem with δ = δ0n
1−p/α.

The next theorem is a consequence of Proposition 2.6, 3.2 and Theorem 4.7.

Theorem 4.8: Suppose that E is a quasi-Banach lattice with M (α)(E)=1 for

some α > 0. Then the following are equivalent:

(1) E is uniformly H-convex of power type;

(2) E is uniformly PL-convex of power type;

(3) E is uniformly C-convex of power type; and

(4) E is uniformly monotone of power type.

Notice that if E is q-concave, ℓ∞ is not lattice finitely 1-representable in E,

so by Theorem 4.1 in [21], E is α-convex for some α > 0. Then, using the

similar idea as in [34], we can obtain the following theorem (cf. Corollary 3.3

in [34], Corollary 4.4 and 4.6 in [23]). For the relevant facts concerning the

super-properties, see [29].

Theorem 4.9: For any quasi-Banach lattice (E, ‖ · ‖) the following are equiv-

alent:

(1) E is q-concave for some q < ∞;
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(2) E has a lattice renorming under which it is uniformly H-convex;

(3) E has a lattice renorming under which it is uniformly PL-convex;

(4) E has a lattice renorming under which it is uniformly C-convex of power

type;

(5) E has a lattice renorming under which it is uniformly monotone of power

type;

(6) for any λ ≥ 1, ℓ∞ is not finitely λ-representable in E;

(7) for any λ ≥ 1, ℓ∞ is not lattice finitely λ-representable in E; and

(8) E has the super-ARNP ;

Proof: The equivalence of (1), (2), (3) and (8) is shown in [34]. Suppose

that (1) holds. E is α-convex and q-concave for some α > 0. If we use the

convexification and Proposition 1.d.8 in [26], we obtain a lattice renorming

‖| · ‖| with M (α)(E) = M(q)(E) = 1. Then (E, ‖| · ‖|) is uniformly monotone

of power type by Corollary 4.6 and it is uniformly C-convex of power type by

Theorem 4.8. Hence (1) implies (4). Proposition 3.1 shows that (4) implies

(5). The implication (5)⇒(6) is proved by Proposition 2.8. (6)⇒(7) is trivial.

We finish the proof by showing that (7) implies (1). Assume that (7) holds.

By Theorem 4.1 in [21], E is α-convex for some 0 < α < ∞. Suppose, on the

contrary, that E is not q-concave for any q < ∞. E admits an equivalent α-

convex quasi-norm ‖|·‖| with M (α)(E) = 1. Then the Banach lattice F = E(1/α)

is not q-concave for any q < ∞. Hence by Theorem 1.f.12 in [26], for any ǫ > 0

and n ∈ N there exist mutually disjoint elements xi ≥ 0 (1 ≤ i ≤ n) in F such

that for all complex numbers ai (1 ≤ i ≤ n) we have

max
1≤i≤n

|ai| ≤ ‖a1 ⊙ x1 ⊕ · · · ⊕ an ⊙ xn‖F ≤ (1 + ǫ) max
1≤i≤n

|ai|.

Using the definition of convexification and disjointness of xi’s, we get

max
1≤i≤n

|ai| ≤ ‖|a1x1 + · · · + anxn‖|E ≤ (1 + ǫ)1/α max
1≤i≤n

|ai|.

Then ℓ∞ is lattice finitely λ-representable in (E, ‖ · ‖) for some λ. This is a

contradiction to our assumption.

Remark 4.10: In the proof of Theorem 4.9, it is easy to check that the equiva-

lence of (1), (5), (6) and (7) can be established in real or complex quasi-Banach

lattices, which the Maurey-Pisier type theorem (see [9]) for quasi-Banach lat-

tices.
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Let E be a σ-order continuous symmetric quasi-Banach function space on

(0,∞). Hereafter, (M, τ) denotes a semifinite von Neumann algebra on a Hilbert

space H , with a faithful semifinite normal trace τ and LE(M, τ) the associated

symmetric space of measurable operators. For the definition of the symmetric

space LE(M, τ) of measurable operators, consult [34].

If we review the proof of Theorem 4.4 in [34] with using Proposition 4.3

instead of the condition Mq(E) = 1, then it can be extended to the following

Theorem 4.11: Let 0 < α ≤ q < ∞. Let E be a complex symmetric quasi-

Banach function space on (0,∞) with M (α)(E) = 1. Suppose that the mod-

ulus of monotonicity ΠE
2 is of power type ǫq. Then LE(M, τ) is uniformly

H-convex for any semifinite von Neumann algebra (M, τ). More precisely, for

any f ∈ Hp(LE(M, τ)), where p = max{2, q(1 + [1/ min{α, 1}])}, we have

(‖f(0)‖p
E + δ‖f − f(0)‖p

Hp(LE(E,τ)))
1/p ≤ ‖f‖Hp(LE(E,τ)),

where δ > 0 is a constant depending only on α and q. Consequently,

hLE(E,τ)
p (ǫ) � ǫp.

5. Lifting properties of uniform PL-convexity

Let E be a non-trivial quasi-Köthe function space over a complete measure

space (Ω, µ). For the definition of a quasi-Köthe function space, see [22]. Let

X be a non-trivial complex quasi-Banach space.

Let L0(X) be the set of all X-valued strongly µ-measurable functions. The

quasi-Köthe-Bochner function space (cf. [25]) E(X) is a quasi-Banach

space defined by

E(X) = {f ∈ L0(X): t 7→ ‖f(t)‖X is an element of E},

with the quasi-norm

‖f‖E(X) = ‖|f(·)‖X‖E .

We show that a quasi-Köthe-Bochner function space (E(X), ‖ · ‖E(X)) is a

complete metric space and the quasi-norm is continuous if X is a continuously

quasi-normed space.

Proposition 5.1: Let X be a quasi-Banach space and let E be an α-convex

quasi-Köthe function space on a measure space (Ω, Σ, µ) for some 0 < α < ∞.

Then (E(X), ‖ · ‖E(X)) is a complete metric space.
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Proof: We have for every finite sequence g1, . . . , gn in E(X) and t ∈ Ω,

∥

∥

∥

∥

n
∑

j=1

gj(t)

∥

∥

∥

∥

X

≤ B

( n
∑

j=1

‖gj(t)‖p
X

)1/p

,

since X is p-normable for some 0 < p ≤ 1 and B > 0. Let β = min{p, α}, then

∞
∑

j=1

‖gj‖β
E(X) < ∞

for some sequence {gj} in E(X). After renorming and convexification, we can

apply Proposition 1.d.5 of [26] and we conclude that E is q-convex for every

0 < q < α. Hence

∥

∥

∥

∥

( n
∑

j=1

‖gj(·)‖p
X

)1/p∥
∥

∥

∥

E

≤ M (β)(E)

( n
∑

j=1

‖gj‖β
E(X)

)1/β

.

This implies that

∥

∥

∥

∥

n
⊕

i=1

‖gj(·)‖X

∥

∥

∥

∥

p

E(1/p)

=

∥

∥

∥

∥

( n
∑

j=1

‖gj(·)‖p
X

)1/p∥
∥

∥

∥

E

≤ M (β)(E)

( n
∑

j=1

‖gj‖β
E(X)

)1/β

.

By [6], E(1/p) is complete. So
∑∞

j=1 ‖gj‖β
E(X) < ∞ implies that

h(t) =

∞
⊕

j=1

‖gj(t)‖X

converges in E(1/p). Notice that
⊕n

j=1 ‖gj(t)‖X is increasing for n ≥ 1. So it is

easy to check that for almost every t ∈ Ω,

h(t) =

∞
⊕

j=1

‖gj(t)‖X .

We also have for every n ≥ 1 and t ∈ Ω,

∥

∥

∥

∥

n
∑

j=1

gj(t)

∥

∥

∥

∥

X

≤ B

( n
∑

j=1

‖gj(t)‖p
X

)1/p

≤ B

∞
⊕

j=1

‖gj(t)‖X .

Hence it is shown that for almost every t ∈ Ω,

g(t) =

∞
∑

j=1

gj(t)
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exists in X and g ∈ E(X). For every n ≥ 1

∥

∥

∥

∥

g −
n
∑

j=1

gj

∥

∥

∥

∥

E(X)

≤ B

∥

∥

∥

∥

( ∞
∑

j=n+1

‖gj(·)‖p
X

)1/p∥
∥

∥

∥

E

≤ M (β)(E)B

( ∞
∑

j=n+1

‖gj‖β
E(X)

)1/β

.

Therefore {
∑n

j=1 gj}n converges to g in E(X) if
∑∞

1 ‖gj‖β
E(X) is finite. The

proof is complete.

Proposition 5.2: Suppose that (X, ‖ · ‖X) is a continuously quasi-normed

space and suppose also that E is a complex quasi-Köthe function space with

M (α)(E) = 1 for some α > 0. Then the quasi-Köthe–Bochner function space

(E(X), ‖ · ‖E(X)) is a continuously quasi-normed space.

Proof: We may assume that 0 < α ≤ 1. Since ‖ ·‖X is uniformly continuous on

the unit ball of X , given ǫ > 0 there exists δ > 0 such that
∣

∣‖x‖X − ‖y‖X

∣

∣ < ǫ

if x and y are elements in BX with ‖x − y‖X ≤ δ. Choose η > 0 so that

K(1 + 1/δ)η < ǫ, where K is the quasi-norm constant of X .

Then if ‖f‖E(X) ≤ 1 and ‖g‖E(X) ≤ 1 and ‖f − g‖E(X) ≤ η, let

A1 = {t ∈ Ω : ‖f(t) − g(t)‖X < δ‖g(t)‖X ≤ δ‖f(t)‖X};
A2 = {t ∈ Ω : ‖f(t) − g(t)‖X < δ‖f(t)‖X ≤ δ‖g(t)‖X};
B1 = {t ∈ Ω : ‖f(t) − g(t)‖X ≥ δ‖g(t)‖X}; and

B2 = {t ∈ Ω : ‖f(t) − g(t)‖X ≥ δ‖f(t)‖X}.
If t ∈ A1, let

f1(t) = f(t)/‖f(t)‖X , g1(t) = g(t)/‖f(t)‖X .

Then ‖f1(t)‖X = 1, ‖g(t)‖X ≤ 1, and ‖f1(t) − g1(t)‖X ≤ δ. Therefore,

‖f(t)‖X − ‖g(t)‖X = ‖f(t)‖X(‖f1(t)‖ − ‖g1(t)‖X) ≤ ǫ‖f(t)‖.

Note also that if t ∈ B1,

‖f(t)‖X = ‖(f(t) − g(t)) + g(t)‖X ≤ K(‖f(t)− g(t)‖X + ‖g(t)‖X)

≤ K(1 + 1/δ)‖f(t)− g(t)‖X .

Hence for every t ∈ Ω,

(5.1)

‖f(t)‖X − ‖g(t)‖X

≤ (‖f(t)‖X − ‖g(t)‖X)χA1(t) + ‖f(t)‖XχB1(t)

≤ ǫ‖f(t)‖XχA1(t) + K(1 + 1/δ)‖f(t)− g(t)‖XχB1(t)
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If we change the role of f and g in the inequality (5.1) we have

‖g(t)‖X − ‖f(t)‖X ≤ ǫ‖f(t)‖XχA2(t) + K(1 + 1/δ)‖f(t) − g(t)‖XχB2(t)

So we have for every t ∈ Ω,

|‖f(t)‖X − ‖g(t)‖X | ≤ǫ‖f(t)‖XχA1(t) + K(1 + 1/δ)‖f(t)− g(t)‖XχB1(t)

+ ǫ‖f(t)‖XχA2(t) + K(1 + 1/δ)‖f(t) − g(t)‖XχB2(t).

Hence we have

‖‖f(·)‖X − ‖g(·)‖X‖α
E ≤ 2ǫα‖f‖α

E(X) + 2Kα(1 + 1/δ)α‖f − g‖α
E(X)

≤ 2ǫα + 2Kα(1 + 1/δ)αηα ≤ 4ǫα.

Therefore

|‖f‖α
E(X) − ‖g‖α

E(X)| ≤ ‖‖f(·)‖X − ‖g(·)‖X‖α
E ≤ 4ǫα

This shows that ‖·‖E(X) is uniformly continuous on the unit ball of E(X).

Notice that if we choose g ∈ E and a ∈ X such that ‖g‖E = 1 and ‖a‖X = 1,

then both, the map x 7→ g(·)x from X into E(X) and the map f 7→ f(·)a from

E into E(X) are isometries.

The next result is a generalization of Theorem 5.2 in [23] from Banach to

quasi-Banach spaces.

Theorem 5.3: Suppose that (X, ‖ · ‖X) is a continuously quasi-normed space

and suppose also that E ia a complex quasi-Köthe function space with

M (α)(E) = 1 for some α > 0. Then the quasi-Köthe-Bochner function space

E(X) is uniformly PL-convex if and only if E is uniformly PL-convex and X

is uniformly PL-convex.

Proof: For α > 1, E is a Banach lattice, so we have M (1)(E) = 1. Hence

we may assume that 0 < α ≤ 1. Suppose that E(X) is uniformly PL-convex

and suppose on the contrary, that E is not uniformly PL-convex. So there are

sequences (xn), (yn) in E and ǫ > 0 such that

‖xn‖E = 1, ‖yn‖E ≥ ǫ, and lim
n

∫

T

‖xn + eiθyn‖E dm(θ) = 1.

Let a be a norm one element of X . Since E(X) is uniformly PL-convex,

1 ≤
∫

T

‖xn ⊗ a + eiθyn ⊗ a‖E(X) dm(θ) =

∫

T

‖xn + eiθyn‖E dm(θ)
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holds for all n ∈ N, where x⊗ a is a function ω 7→ x(ω)a from Ω to X for every

x ∈ E and for every a ∈ X . Notice that ‖xn⊗a‖E(X) = 1 and ‖yn⊗a‖E(X) ≥ ǫ.

Hence

lim
n

∫

T

‖xn ⊗ a + eiθyn ⊗ a‖E(X) dm(θ) = 1.

This contradicts to the fact that E(X) is uniformly PL-convex. By the isometric

embedding of X into E(X), X is uniformly PL-convex if E(X) is uniformly PL-

convex.

For the converse, suppose that both E and X are uniformly PL-convex.

Consider the simple function

f(θ) =

n
∑

k=1

akχGk
(θ), θ ∈ [0, 2π],

where Gk are mutually disjoint Lebesgue measurable subsets of T = [0, 2π] and

ak ∈ E. Then the α-convexity of E with M (α) = 1 gives the following:

∥

∥

∥

∥

( n
∑

i=1

|ai|αm(Gi)

)1/α∥
∥

∥

∥

E

≤
( n
∑

i=1

‖ai‖α
Em(Gi)

)1/α

,

where dm(t) = 1
2π dt is the normalized Lebesgue measure on T. Hence for every

simple function f : [0, 2π] → E,

(5.2)

∥

∥

∥

∥

(
∫

T

|f |α dm

)1/α∥
∥

∥

∥

E

≤
(
∫

T

‖f‖α
E dm

)1/α

holds.

Let x, y be elements in E(X). Now we shall find simple functions that

approximate ‖x + eiθy‖X . For each n, let

ak(t) = inf
{

‖x(t) + eθy(t)‖X : θ ∈
[2π(k − 1)

2n
,
2πk

2n

)

, θ ∈ Q

}

, k = 1, . . . , 2n.

Letting

fn(θ, t) =
2n
∑

k=1

ak(t)χ[(2π(k−1))/2n,(2πk)/2n)(θ),

we obtain the simple functions fn such that 0 ≤ fn(θ, t) ↑ ‖x(t) + eiθy(t)‖X

for every t ∈ Ω and for every θ ∈ T. Then applying the monotone convergence

theorem, we have for each t ∈ Ω

∫

T

fn(θ, t)α dm(θ) ↑
∫

T

‖x(t) + eθy(t)‖α
X dm(θ).
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Using Proposition 2.3, we have for every θ ∈ T,

lim
n→∞

‖fn(θ, ·)‖α
E(X) = ‖x + eiθy‖α

E(X)

and

lim
n→∞

∥

∥

∥

∥

(
∫

T

fn(θ, ·)α dm(θ)

)1/α∥
∥

∥

∥

=

∥

∥

∥

∥

(
∫

T

‖x(·) + eiθy(·)‖α dm(θ)

)1/α∥
∥

∥

∥

.

Putting fn instead of f in inequality (5.2) and taking a limit, we have

(
∫

T

‖x + eiθy‖α
E(X) dm

)1/α

≥
∥

∥

∥

∥

(
∫

T

‖x(·) + eiθy(·)‖α dm

)1/α∥
∥

∥

∥

.

Hence letting f, g ∈ E(X) with ‖f‖ = 1 and ‖g‖ = 31/αǫ > 0, we get

(
∫

T

‖f + eiθg‖α
E(X) dm(θ)

)1/α

≥
∥

∥

∥

∥

(
∫

T

‖f(·) + eiθg(·)‖α
X dm(θ)

)1/α∥
∥

∥

∥

E

.

Let

h(t) =

(
∫

T

‖f(t) + eiθg(t)‖α
X dm(θ)

)1/α

A1 = {t : ‖f(t)‖ ≥ ‖g(t)‖ ≥ 0}, A2 = {t : ‖f(t)‖ = 0},
A3 = {t : ‖g(t)‖ > ‖f(t)‖ > 0}, R = support of g.

Then g = gχA1 + gχA2 + gχA3 . So there is i = 1, 2, 3 such that ‖gχAi‖ ≥ ǫ.

Case (1): Assume ‖gχA1‖ ≥ ǫ and let

C = {t : ‖g(t)‖ ≥ ǫ/31/α‖f(t)‖}.

Then

h(t) ≥ ‖f(t)χΩ\(A1∩R)(t)‖X + h(t)χA1∩R(t)

≥ ‖f(t)χΩ\(A1∩R)(t)‖X + h(t)χA1∩R∩C(t) + h(t)χA1∩R\C(t)

≥ ‖f(t)χΩ\(A1∩R)(t)‖X + ‖f(t)‖X(1 + HX
1 (

ǫ

31/α
))χA1∩R∩C(t)

+ ‖f(t)‖XχA1∩R\C(t)

≥ ‖f(t)‖X + HX
1 (

ǫ

31/α
)‖f(t)‖XχA1∩R∩C(t).

Notice also that

‖fχA1∩R∩C‖α
E(X) ≥ ‖gχA1∩R∩C‖α

E(X) = ‖gχA1∩C‖α
E(X)

≥ ‖gχA1‖α
E(X) − ‖gχA1\C‖α

E(X)

≥ ‖gχA1‖α
E(X) −

ǫα

3
‖fχA1\C‖α

E(X) ≥
2ǫα

3
.
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Now the uniform monotonicity of E implies that

‖h‖E ≥ ‖‖f(·)‖X + HX
1

( ǫ

31/α

)

‖f(·)‖XχA1∩R∩C‖E

≥ 1 + ΠE
1

(

HX
1

( ǫ

31/α

)(2ǫα

3

)1/α)

.

Hence

(
∫

T

‖f + eiθg‖α
E(X) dm(θ)

)1/α

≥ 1 + ΠE
1

(

HX
1

( ǫ

31/α

)(2ǫα

3

)1/α)

.

Case (2): Assume ‖gχA2‖ ≥ ǫ. Then

h(t) ≥ ‖f(t)χΩ\(A2∩R)(t)‖X + h(t)χA2∩R(t)

= ‖f(t)χΩ\(A2∩R)(t)‖X + (‖f(t)‖X + ‖g(t)‖X)χA2∩R(t)

= ‖f(t)‖X + ‖g(t)‖XχA2(t).

It is clear that the uniform monotonicity of E implies that

‖h‖E ≥ 1 + ΠE
1 (ǫ).

Hence
(
∫

T

‖f + eiθg‖α
E(X) dm(θ)

)1/α

≥ 1 + ΠE
1 (ǫ).

Case (3): Assume that ‖gχA3‖ ≥ ǫ. Then

h(t) ≥ ‖f(t)‖XχΩ\A3
(t) + h(t)χA3(t).

Let

δ := 1 −
( 2 + ΠE

1 (ǫ)

2 + 2ΠE
1 (ǫ)

)α

> 0.

If ‖fχA3‖ ≤ δ1/α then ‖fχΩ\A3
‖α ≥ 1 − δ. Moreover

h(t) ≥ ‖f(t)‖XχΩ\A3
(t) + ‖g(t)‖XχA3(t).

Since the uniform monotonicity of E implies that

‖h‖E ≥ (1 − δ)1/α
(

1 + ΠE
1 (ǫ)

)

= 1 +
1

2
ΠE

1 (ǫ),

so
(
∫

T

‖f + eiθg‖α
E(X) dθ

)1/α

≥ 1 +
1

2
ΠE

1 (ǫ).
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If, on the other hand, ‖fχA3‖ ≥ δ1/α, then

h(t) ≥ ‖f(t)‖XχΩ\A3
(t) + (1 + HX

1 (1))‖f(t)‖XχA3(t)

= ‖f(t)‖X + HX
1 (1)‖f(t)‖XχA3(t).

Thus by the uniform monotonicity of E,

‖h‖E ≥ 1 + ΠE
1 (HX

1 (1)δ1/α).

Hence
(
∫

T

‖f + eiθg‖α
E(X) dm(θ)

)1/α

≥ 1 + ΠE
1 (HX

1 (1)δ1/α).

Combining these three cases and taking

δ̂ = min
{

ΠE
1

(

HX
1

( ǫ

31/α

)(2ǫα

3

)1/α)

,
1

2
ΠE

1 (ǫ), ΠE
1 (HX

1 (1)δ1/α)
}

,

we get
(
∫

T

‖f + eiθg‖α
E(X) dθ

)1/α

≥ 1 + δ̂,

which completes the proof.

To conclude this paper we give some examples. Recall that, given 0 < p < ∞
and a non-increasing, locally integrable function w: [0, γ) → (0,∞), the Lorentz

space Λp,w is defined as follows

Λp,w =

{

x ∈ L0 : ‖x‖p =

(
∫ γ

0

(x∗(t))pw(t) dt

)1/p

< ∞
}

,

where L0 is a set of all measurable functions on [0, γ) and x∗ is a decreasing

rearrangement of x ∈ L0. For the definition and basic properties of decreas-

ing rearrangement, see [2]. For p = 1 it is denoted by Λw. Observe that

Λp,w is a p-convexification of Λw. We say that the weight w is regular if

inft∈(0,γ) S(t)/S(t/2) > 1, where S(t) =
∫ t

0
w(s) ds.

Λw is uniformly monotone if and only if w is regular (from [16]). Hence The-

orem 3.4 and Corollary 4.5 show the next proposition, which is a generalization

of Corollary 3.6 in [5].

Proposition 5.4: The following are equivalent:

(1) w is regular;

(2) Λw is uniformly monotone;

(3) Λp,w is uniformly monotone for every 0 < p < ∞; and
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(4) the complex Λp,w is uniformly PL-convex for every 0 < p < ∞

Using both Theorem 5.3 and Proposition 5.4 we get the next proposition,

which is a generalization of Theorem 4.1 in [7].

Proposition 5.5: Suppose that (X, ‖·‖) is a continuously quasi-normed space.

Then the complex space Λp,w(X) is uniformly PL-convex if and only if X is

uniformly PL-convex and w is regular.
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[18] V. I. Istrăţescu, On complex strictly convex spaces. II, Journal of Mathematical

Analysis and Applications 71 (1979), 580–589.
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